Positive solutions to a nonlinear fractional equation with an external source term
نویسندگان
چکیده
<p style='text-indent:20px;'>This paper deals with the following nonlinear fractional equation an external source term</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \label{eqS0.1} (-\Delta)^{s}u +u = K(x)u^{p}+f(x), \; u&gt;0, x\in{\Bbb R}^N, \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ N&gt;2s $\end{document}</tex-math></inline-formula>, id="M2">\begin{document}$ 0&lt;s&lt;1 id="M3">\begin{document}$ 1&lt;p&lt;2_{\ast}(s)-1 id="M4">\begin{document}$ 2_{\ast}(s) \frac{2N}{N-2s} id="M5">\begin{document}$ K(x) $\end{document}</tex-math></inline-formula> is a continuous function and id="M6">\begin{document}$ f\in L^{2}({\Bbb R}^{N})\cap L^{\infty}({\Bbb R}^{N}) $\end{document}</tex-math></inline-formula>. Using Lyapunov-Schmidt reduction scheme, we prove that admits id="M7">\begin{document}$ k $\end{document}</tex-math></inline-formula>-peak solutions for any integer id="M8">\begin{document}$ k&gt;0 if id="M9">\begin{document}$ f small id="M10">\begin{document}$ satisfies some additional assumptions at infinity. The main difficulty to improve estimate of remainder obtained in process.</p>
منابع مشابه
Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملTriple Positive Solutions for Boundary Value Problem of a Nonlinear Fractional Differential Equation
متن کامل
Finite Element Solutions for the Space Fractional Diffusion Equation with a Nonlinear Source Term
and Applied Analysis 3 Baeumer et al. 8, 13 have proved existence and uniqueness of a strong solution for 1.2 using the semigroup theory when f x, t, u is globally Lipschitz continuous. Furthermore, when f x, t, u is locally Lipschitz continuous, existence of a unique strong solution has also been shown by introducing the cut-off function. Finite difference methods have been studied in 14–16 fo...
متن کاملExistence of Positive Solutions for a Nonlinear Fractional Differential Equation
Using the Schauder fixed point theorem, we prove an existence of positive solutions for the fractional differential problem in the half line R+ = (0,∞): Du = f(x, u), lim x→0+ u(x) = 0, where α ∈ (1, 2] and f is a Borel measurable function in R+ × R+ satisfying some appropriate conditions.
متن کاملPeriodic solution for a delay nonlinear population equation with feedback control and periodic external source
In this paper, sufficient conditions are investigated for the existence of periodic (not necessarily positive) solutions for nonlinear several time delay population system with feedback control. Nonlinear system affected by an periodic external source is studied. Existence of a control variable provides the extension of some previous results obtained in other studies. We give a illustrative e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2022
ISSN: ['1553-5231', '1078-0947']
DOI: https://doi.org/10.3934/dcds.2022068